I am attempting to color the bars in a bar chart by the dependent variable. The same data i am using is just the iris set.
The documentation states that the “marker” property is available for go.Bar. However, when I add this in, it doesnt change the color.
But it doesn’t throw an error, either.
Does anyone have any ideas on how to color the bars by the y axis?
def bar_overview(df, dependent,max_cols=4):
max_rows=ceil(float(len(df.columns)/max_cols))
fig = make_subplots(
rows=max_rows,
cols=max_cols,
subplot_titles=df.drop([dependent], 1).columns).update_layout(
{"title":"bar of features, by dependent variable"})
col_cyc = cycle(iter(range(1,max_cols+1)))
color_list = px.colors.qualitative.T10
row=1
for j in df.drop([dependent], 1).columns:
col=next(col_cyc)
gb_mean = df.groupby([dependent]).agg({j: "mean"})
fig.add_bar(
x=gb_mean.index.astype(str),
y=gb_mean[j],
row=row,
col=col,
name=j,
marker={"colorscale": color_list},
#color=gb_mean.index.astype(str),
#color_discrete_sequence=colors
)
if col % max_cols == 0:
row+=1
col+=1
print(color_list)
return fig
bar_overview(df, "class", 2)
The output is shown here
And what I would like to recreate is for example something like this
Note: please ignore the # of charts, typing from my phone.