Hi @jralfonsog,
Welcome to Plotly forum!!
Plotly provides the function plotly.figure_factory.create_distplot()
to generate a distplot, that can display the histogram, the pdf estimate, and the rug plot:
create_distplot(hist_data, group_labels, bin_size=1.0, curve_type='kde', colors=None, rug_text=None, histnorm='probability density', show_hist=True, show_curve=True, show_rug=True)
This function works with multiple data sets. If you want to plot just the distplot associated to a single sample,
x= [n values]
, then pass to hist_data
, [x]
, i.e. a list of a list, not just x
.
Example:
import plotly.figure_factory as ff
import numpy as np
np.random.seed(123)
x = np.random.normal(loc=2.5, scale=0.85, size=300)
group_labels = 'My sample'
# Create distplot with custom bin_size, and without rug plot
fig = ff.create_distplot([x], [group_labels], bin_size=.2, show_rug=False)
fig.update_layout(width=600,
height=400,
bargap=0.01)
If we set above, show_rug=True
, we get:
For more information on this function type:
help(ff.create_distplot)
and here https://plot.ly/python/distplot/ you can find more examples, but with no settings to ensure plot aesthetics (i.e. they are plotted with default layout.width
and layout.height
, and the bargap
is not set, as i did above). That’s why the histograms look like a continuum, not like in these seaborn examples https://seaborn.pydata.org/generated/seaborn.distplot.html.
Hence you should customize the figure appearance.