Hi all,
I am currently working on a Data Visualization project:
Is there any built-in function that enables me to automatically plot Regression lines and confidence intervals to this plot, or would I have to compute this manually from the scatter plot data and then plot this to the same graph? Checking the documentation I couldn’t find anything that supports this.
For reference, here is the code I am using for one of the plots:
dcc.Graph(
id='km/h-speedcoefficient',
figure={
'data': [
dict(
x=df[df['SpeedCoefficient'] == i]['SpeedCoefficient'],
y=df[df['SpeedCoefficient'] == i]['Km/h'],
text=df[df['SpeedCoefficient'] == i]['Subproject'],
mode='markers',
opacity=0.7,
marker={
'size': 15,
'line': {'width': 0.5, 'color': 'white'},
'color': df[df['SpeedCoefficient'] == i]['SpeedCoefficient'],
'cmin': min(df['SpeedCoefficient']),
'cmax': max(df['SpeedCoefficient']),
'colorscale': [[0.0, '#01cdfe'], [1.0, '#ff71ce']],#"Bluered",
'autocolorscale': False,
'showscale': True
},
name=i
) for i in df.SpeedCoefficient.unique()
],
'layout': dict(
title={'text': 'Km/h per SpeedCoefficient (0.1, 0.5, 1.0)'},
xaxis={'type': 'lin', 'title': 'Speed Coefficient', 'color': 'white'},
yaxis={'title': 'Km/h', 'color': 'white'},
margin={'l': 40, 'b': 40, 't': 100, 'r': 10},
legend={'x': 0, 'y': 1},
showlegend=False,
hovermode='closest',
font={'color': 'white'},
paper_bgcolor='#303030',
plot_bgcolor='#424242'
)
}
)
Any help would be greatly appreciated, many thanks in advance!
Jonny