Black Lives Matter. Please consider donating to Black Girls Code today.

Plotly slider to filter scatter plot

I would like to use the slider when I am visualizing my data as a scatter plot.

def fit_huber_line(x, y):
    from sklearn.linear_model import HuberRegressor, LinearRegression

    # given one dimensional x and y vectors - return x and y for fitting a line on top of the regression
    A = np.vstack([x, np.ones(len(x))]).T
    huber = HuberRegressor().fit(A, y)

    c = huber.intercept_ + huber.coef_[1]
    m = huber.coef_[0]

    return m, c

suppdata = pd.DataFrame({"x" : list(np.arange(0, 5, 0.1)),
                         "y" : list(np.arange(0, 5, 0.1)*2)  })

fig = px.scatter(suppdata, x='x', y='y',
                 hover_data=suppdata.columns.to_list(), title=mytitle)

m, c = fit_huber_line(x = suppdata['x'], 
                      y = suppdata['y'])

# over lay the line - using a robus regression
my_x = suppdata['x']

fig.add_trace(
    go.Scatter(
        x= my_x,
        y= m * my_x + c,
        mode="lines",
        line=go.scatter.Line(color="red"),
        showlegend=False)
    )

mid_point = (max(my_x) - min(my_y))/2