Hi @WolVes, itβs a bit more convoluted than I would have hoped, but below is an approach which should work in most cases. I adapted the first example of https://dash.plot.ly/interactive-graphing to a splom trace, with the following code
import json
from textwrap import dedent as d
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
styles = {
'pre': {
'border': 'thin lightgrey solid',
'overflowX': 'scroll'
}
}
import plotly.express as px
df = px.data.iris()
fig = px.scatter_matrix(df)
app.layout = html.Div([
dcc.Graph(
id='basic-interactions',
figure=fig,
),
html.Div(className='row', children=[
html.Div([
dcc.Markdown(d("""
**Hover Data**
Mouse over values in the graph.
""")),
html.Pre(id='hover-data', style=styles['pre'])
], className='three columns'),
html.Div([
dcc.Markdown(d("""
**Click Data**
Click on points in the graph.
""")),
html.Pre(id='click-data', style=styles['pre']),
], className='three columns'),
html.Div([
dcc.Markdown(d("""
**Selection Data**
Choose the lasso or rectangle tool in the graph's menu
bar and then select points in the graph.
Note that if `layout.clickmode = 'event+select'`, selection data also
accumulates (or un-accumulates) selected data if you hold down the shift
button while clicking.
""")),
html.Pre(id='selected-data', style=styles['pre']),
], className='three columns'),
html.Div([
dcc.Markdown(d("""
**Zoom and Relayout Data**
Click and drag on the graph to zoom or click on the zoom
buttons in the graph's menu bar.
Clicking on legend items will also fire
this event.
""")),
html.Pre(id='relayout-data', style=styles['pre']),
], className='three columns')
])
])
@app.callback(
Output('hover-data', 'children'),
[Input('basic-interactions', 'hoverData')])
def display_hover_data(hoverData):
return json.dumps(hoverData, indent=2)
@app.callback(
Output('click-data', 'children'),
[Input('basic-interactions', 'clickData')])
def display_click_data(clickData):
return json.dumps(clickData, indent=2)
@app.callback(
Output('selected-data', 'children'),
[Input('basic-interactions', 'selectedData')])
def display_selected_data(selectedData):
return json.dumps(selectedData, indent=2)
@app.callback(
Output('relayout-data', 'children'),
[Input('basic-interactions', 'relayoutData')])
def display_relayout_data(relayoutData):
return json.dumps(relayoutData, indent=2)
if __name__ == '__main__':
app.run_server(debug=True)
then when you hover on a point you will see the following hoverData
(you could also just print it in a callback, the fancy formatting of the app is just for convenience).
{
"points": [
{
"curveNumber": 0,
"pointNumber": 8,
"pointIndex": 8,
"x": 4.4,
"y": 2.9,
"dimensions[0].values": 4.4,
"dimensions[1].values": 2.9,
"dimensions[2].values": 1.4,
"dimensions[3].values": 0.2,
"dimensions[4].values": "setosa",
"dimensions[5].values": 1
}
]
}
So one thing you could do is check to which dimensions the values of x
and y
correspond, by comparing them to the dimensions[i].values
which are also given. I must admit that this breaks down when a given point has equal values for different dimensions, maybe you can issue a warning in this case?