Plotly Plot not showing, Portfolio Optimisation

Hello, I tried to run this code and it seems to produce no errors but at the end i dont get the plot for some reason.
Please help me out ive been staring at this for hours

library(PortfolioAnalytics)
library(quantmod)
library(PerformanceAnalytics)
library(zoo)
library(plotly)
library(foreach)
library(DEoptim)
library(iterators)
library(fGarch)
library(Rglpk)
library(quadprog)
library(ROI)
library(ROI.plugin.glpk)
library(ROI.plugin.quadprog)
library(ROI.plugin.symphony)
library(pso)
library(GenSA)
library(corpcor)
library(testthat)
library(nloptr)
library(MASS)
library(robustbase)

Get data

getSymbols(c(“MSFT”, “SBUX”, “IBM”, “AAPL”, “^GSPC”, “AMZN”))

Assign to dataframe

Get adjusted prices

prices.data ← merge.zoo(MSFT[,6], SBUX[,6], IBM[,6], AAPL[,6], GSPC[,6], AMZN[,6])

Calculate returns

returns.data ← CalculateReturns(prices.data)
returns.data ← na.omit(returns.data)

Set names

colnames(returns.data) ← c(“MSFT”, “SBUX”, “IBM”, “AAPL”, “^GSPC”, “AMZN”)

Save mean return vector and sample covariance matrix

meanReturns ← colMeans(returns.data)
covMat ← cov(returns.data)

Start with the names of the assets

port ← portfolio.spec(assets = c(“MSFT”, “SBUX”, “IBM”, “AAPL”, “^GSPC”, “AMZN”))

Box

port ← add.constraint(port, type = “box”, min = 0.05, max = 0.8)

Leverage

port ← add.constraint(portfolio = port, type = “full_investment”)

Generate random portfolios

rportfolios ← random_portfolios(port, permutations = 5000, rp_method = “sample”)

Get minimum variance portfolio

minvar.port ← add.objective(port, type = “Risk”, name = “var”)

Optimize

minvar.opt ← optimize.portfolio(returns.data, minvar.port, optimize_method = “random”,
rp = rportfolios)

Generate maximum return portfolio

maxret.port ← add.objective(port, type = “Return”, name = “mean”)

Optimize

maxret.opt ← optimize.portfolio(returns.data, maxret.port, optimize_method = “random”,
rp = rportfolios)

Generate vector of returns

minret ← 0.06/100
maxret ← maxret.opt$weights %*% meanReturns

vec ← seq(minret, maxret, length.out = 100)

eff.frontier ← data.frame(Risk = rep(NA, length(vec)),
Return = rep(NA, length(vec)),
SharpeRatio = rep(NA, length(vec)))

frontier.weights ← mat.or.vec(nr = length(vec), nc = ncol(returns.data))
colnames(frontier.weights) ← colnames(returns.data)

for(i in 1:length(vec)){
eff.port ← add.constraint(port, type = “Return”, name = “mean”, return_target = vec[i])
eff.port ← add.objective(eff.port, type = “Risk”, name = “var”)

eff.port ← add.objective(eff.port, type = “weight_concentration”, name = “HHI”,

conc_aversion = 0.001)

eff.port ← optimize.portfolio(returns.data, eff.port, optimize_method = “ROI”)

eff.frontier$Risk[i] ← sqrt(t(eff.port$weights) %% covMat %% eff.port$weights)

eff.frontier$Return[i] ← eff.port$weights %*% meanReturns

eff.frontier$Sharperatio[i] ← eff.port$Return[i] / eff.port$Risk[i]

frontier.weights[i,] = eff.port$weights

print(paste(round(i/length(vec) * 100, 0), “% done…”))
}

feasible. sd ← apply(rportfolios, 1, function(x){
return(sqrt(matrix(x, nrow = 1) %% covMat %% matrix(x, ncol = 1)))
})

feasible.means ← apply(rportfolios, 1, function(x){
return(x %*% meanReturns)
})

feasible. sr ← feasible.means / feasible. sd

p ← plot_ly(x = feasible. sd, y = feasible.means, color = feasible. sr,
mode = “markers”, type = “scattergl”, showlegend = F,

         marker = list(size = 3, opacity = 0.5, 
                       colorbar = list(title = "Sharpe Ratio"))) %>% 

add_trace(data = eff.frontier, x = ‘Risk’, y = ‘Return’, mode = “markers”,
type = “scattergl”, showlegend = F,
marker = list(color = “#F7C873”, size = 5)) %>%

layout(title = “Random Portfolios with Plotly”,
yaxis = list(title = “Mean Returns”, tickformat = “.2%”),
xaxis = list(title = “Standard Deviation”, tickformat = “.2%”),
plot_bgcolor = “#434343”,
paper_bgcolor = “#F8F8F8”,
annotations = list(
list(x = 0.4, y = 0.75,
ax = -30, ay = -30,
text = “Efficient frontier”,
font = list(color = “#F6E7C1”, size = 15),
arrowcolor = “white”)
))

I haven’t read all through your code, but I wonder if it might be a problem I have encountered before: if the dataset is too large, I get a blank plot and no error message. Try plotting a subset of your data (say x = feasible.sd[1:1000], y=feasible.means[1:1000], color=feasible.sr[1:1000]) and see if that works.