Need help with displaying a dashboard using Dash Plotly

Hi everyone! : )

Im doing a Data Visualization with python course and im having some issues with the final project. Some plots are not working and im having problems regarding output-container.children.

import dash
from dash import dcc
from dash import html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.graph_objs as go
import plotly.express as px

# Load the data using pandas
data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/historical_automobile_sales.csv')

# Initialize the Dash app
app = dash.Dash(__name__)

# Set the title of the dashboard
#app.title = "Automobile Statistics Dashboard"

#---------------------------------------------------------------------------------
# Create the dropdown menu options
dropdown_options = [
    {'label': 'Yearly Statistics Report', 'value': 'Yearly Statistics'},
    {'label': 'Recession Period Statistics', 'value': 'Recession Period Statistics'}
]
# List of years 
year_list = [i for i in range(1980, 2024, 1)]
#---------------------------------------------------------------------------------------
# Create the layout of the app
app.layout = html.Div([
    #TASK 2.1 Add title to the dashboard
    html.H1("Automobile Sales Statistics Dashboard", style={'textAlign': 'center', 'color': '#503D36', 'font-size': 24}),#May include style for title
    html.Div([#TASK 2.2: Add two dropdown menus
        html.Label("Select Statistics:"),
        dcc.Dropdown(
            id='dropdown-statistics',
            options=[
                    {'label': 'Yearly Statistics', 'value': 'Yearly Statistics'},
                    {'label': 'Recession Period Statistics', 'value': 'Recession Period Statistics'},
            ],
            value='Select statistics',
            placeholder='Select a report type'
        )
    ]),
    html.Div(dcc.Dropdown(
            id='select-year',
            options=[{'label': i, 'value': i} for i in year_list],
            value='Select Year'
        )),
    html.Div([#TASK 2.3: Add a division for output display
    html.Div(id='output-container', className='chart-grid', style={'display': 'flex'}),])
])
#TASK 2.4: Creating Callbacks
# Define the callback function to update the input container based on the selected statistics
@app.callback(
    Output(component_id='select-year', component_property='disabled'),
    Input(component_id='dropdown-statistics',component_property='value'))

def update_input_container(selected_statistics):
    if selected_statistics =='Yearly Statistics': 
        return False
    else: 
        return True

#Callback for plotting
# Define the callback function to update the input container based on the selected statistics
@app.callback(
    Output(component_id='output-container', component_property='children'),
    [Input(component_id='select-year', component_property='value'), Input(component_id='dropdown-statistics', component_property='value')])


def update_output_container(input_year, selected_statistics):
    if selected_statistics == 'Recession Period Statistics':
        # Filter the data for recession periods
        recession_data = data[data['Recession'] == 1]
        
#TASK 2.5: Create and display graphs for Recession Report Statistics

#Plot 1 Automobile sales fluctuate over Recession Period (year wise)
        # use groupby to create relevant data for plotting
        yearly_rec=recession_data.groupby('Year')['Automobile_Sales'].mean().reset_index()
        R_chart1 = dcc.Graph(
            figure=px.line(yearly_rec, 
                x='Year',
                y='Automobile_Sales',
                title="Average Automobile Sales fluctuation over Recession Period"))

#Plot 2 Calculate the average number of vehicles sold by vehicle type       
        # use groupby to create relevant data for plotting
        average_sales = recession_data.groupby('Vehicle_Type')['Automobile_Sales'].mean().reset_index()                                   
        R_chart2  = dcc.Graph(figure=px.bar(average_sales,
                x='Vehicle_Type',
                y='Automobile_Sales',
                title="Average Automobile Sales by Vehicle Type during Recession Period"))
        
# Plot 3 Pie chart for total expenditure share by vehicle type during recessions
        # use groupby to create relevant data for plotting
        exp_rec= recession_data.groupby('Vehicle_Type')['Advertising_Expenditure'].sum().reset_index()
        R_chart3 = dcc.Graph(
            figure=px.pie(exp_rec,
                values='Advertising_Expenditure',
                names='Vehicle_Type',
                title="Total Expenditures by Vehicle Type during Recession Period"))


# Plot 4 bar chart for the effect of unemployment rate on vehicle type and sales
        unemp_rate = recession_data.groupby('Vehicle_Type')['Automobile_Sales'].mean().reset_index()
        R_chart4 = dcc.Graph(
            figure=px.bar(unemp_rate,
                x='unemployment_rate',
                y='Automobile_Sales',
                title="Effects of Unemployment Rate on Automobile Sales by Vehicle Type during Recession Period"))




        return [
            html.Div(className='chart-item', children=[html.Div(children=R_chart1),html.Div(children=R_chart2)],style={'display': 'flex'}),
            html.Div(className='chart-item', children=[html.Div(children=R_chart3),html.Div(children=R_chart4)],style={'display': 'flex'})
            ]

# TASK 2.6: Create and display graphs for Yearly Report Statistics
 # Yearly Statistic Report Plots                             
    elif (input_year and selected_statistics=='Yearly Statistics') :
        yearly_data = data[data['Year'] == input_year]
                              
#TASK 2.5: Creating Graphs Yearly data
                              
#plot 1 Yearly Automobile sales using line chart for the whole period.
        yas= data.groupby('Year')['Automobile_Sales'].mean().reset_index()
        Y_chart1 = dcc.Graph(figure=px.line(yas,
                x='Year',
                y='Automobile_Sales',
                title='Automobile Sales for the Year'))
            
# Plot 2 Total Monthly Automobile sales using line chart.
    
        mas = yearly_data.groupby('Month')['Automobile_Sales'].sum().reset_index()
        Y_chart2 = dcc.Graph(
            figure=px.line(mas,
                x='Month',
                y='Automobile_Sales',
                title='Total Automobile Sales by Month'))


# Plot bar chart for average number of vehicles sold during the given year
        avr_vdata = yearly_data.groupby('Year')['Automobile_Sales'].mean().reset_index()
        Y_chart3 = dcc.Graph(
            figure=px.bar(avr_vdata,
                x='Year',
                y='Automobile_Sales',
                title='Average Vehicles Sold by Vehicle Type in the year {}'.format(input_year)))

# Total Advertisement Expenditure for each vehicle using pie chart
        exp_data = yearly_data.groupby('Vehicle_Type')['Advertising_Expenditure'].sum().reset_index()
        Y_chart4 = dcc.Graph(
            figure=px.pie(exp_data,
                values='Advertising_Expenditure',
                names='Vehicle_Type',
                title='Total Advertising Expenditure by Vehicle Type'))

#TASK 2.6: Returning the graphs for displaying Yearly data
        return [
                html.Div(className='chart-item', children=[html.Div(children=Y_chart1),html.Div(children=Y_chart2)],style={'display': 'flex'}),
                html.Div(className='chart-item', children=[html.Div(children=Y_chart3),html.Div(children=Y_chart4)],style={'display': 'flex'})
                ]
        
    else:
        return None

# Run the Dash app
if __name__ == '__main__':
    app.run_server(debug=True)


You need to include the unemployment rate column in the groupby aggregation:

...
unemp_rate = recession_data.groupby('Vehicle_Type')[['Automobile_Sales','unemployment_rate']].mean().reset_index()
...

Otherwise can you be more specific about the issues you’re seeing?

Hey @russellthehippo, thank you very much! I fixed some stuf and added the unemployment rate column in the groupby aggregation, now its working fine!

Please could you please write all code. I´m still working with errors