I can't see the graphics in the dash

Hello everyone. Im taking IBM’s data science course. I am trying to create a dasboard. When I launch the application I cant see the graphs. Can you help me please?

#!/usr/bin/env python
# coding: utf-8

# In[ ]:


import dash
from dash import dcc
from dash import html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.graph_objs as go
import plotly.express as px

# Load the data using pandas
data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/historical_automobile_sales.csv')

# Initialize the Dash app
app = dash.Dash(__name__)

# Set the title of the dashboard
app.title = "Automobile Statistics Dashboard"

#---------------------------------------------------------------------------------
# Create the dropdown menu options
dropdown_options = [
    {'label': 'Yearly Statistics', 'value': 'Yearly Statistics'},
    {'label': 'Recession Period Statistics', 'value': 'Recession Period Statistics'}
]
# List of years 
year_list = [i for i in range(1980, 2024, 1)]
#---------------------------------------------------------------------------------------
# Create the layout of the app
app.layout = html.Div([
    #TASK 2.1 Add title to the dashboard
    html.H1("Automobile Statistics Dashboard", style = { 'textAlign' : 'left', 'color' : '#503D36', 'font-size': 24}),#May include style for title
    html.Div([#TASK 2.2: Add two dropdown menus
        html.Label("Select Statistics:"),
        dcc.Dropdown(
            id='dropdown-statistics',
            options=[{'label':'Yearly Statistics', 'value':'Yearly Statistics'},
            {'label':'Recession Period Statistics', 'value':'Recession Period Statistics'}],
            value='Select Statistics',
            placeholder='Select a report type'
        )
    ]),
    html.Div(dcc.Dropdown(
            id='select-year',
            options=[{'label': i, 'value': i} for i in year_list],
            value='Select Year'
        )),
    html.Div([#TASK 2.3: Add a division for output display
    html.Div(id='output-container', className='chart-grid', style={'display':'flex'}),])
])
#TASK 2.4: Creating Callbacks
# Define the callback function to update the input container based on the selected statistics
@app.callback(
    Output(component_id='select-year', component_property='disabled'),
    Input(component_id='dropdown-statistics',component_property='value'))

def update_input_container(selected_statistics):
    if selected_statistics =='Yearly Statistics': 
        return False
    else: 
        return True

#Callback for plotting
# Define the callback function to update the input container based on the selected statistics
@app.callback(
    Output(component_id='output-container', component_property='children'),
    [Input(component_id='select-year', component_property='value'), Input(component_id='dropdown-statistics', component_property='value')])


def update_output_container(selected_statistics, input_year):
    if selected_statistics == 'Recession Period Statistics':
        # Filter the data for recession periods
        recession_data = data[data['Recession'] == 1]
        
#TASK 2.5: Create and display graphs for Recession Report Statistics

#Plot 1 Automobile sales fluctuate over Recession Period (year wise)
        # use groupby to create relevant data for plotting
        yearly_rec=recession_data.groupby('Year')['Automobile_Sales'].mean().reset_index()
        R_chart1 = dcc.Graph(
            figure=px.line(yearly_rec, 
                x='Year',
                y='Automobile_Sales',
                title="Average Automobile Sales fluctuation over Recession Period"))

#Plot 2 Calculate the average number of vehicles sold by vehicle type       
        # use groupby to create relevant data for plotting
        average_sales = recession_data.groupby('Vehicle_Type')['Automobile_Sales'].mean().reset_index()                           
        R_chart2  = dcc.Graph(figure=px.bar(average_sales,
                                    x = 'Vehicle_Type',
                                    y = 'Average Sales',
                                    title = 'Average Sales by Vehicle Type'))
        
# Plot 3 Pie chart for total expenditure share by vehicle type during recessions
        # use groupby to create relevant data for plotting
        exps_rec = recession_data.groupby('Vehicle_Type')['Advertising_Expenditure'].sum().reset_index()
        R_chart3 = dcc.Graph(
                figure = px.pie(exps_rec,
                values = 'Advertising_Expenditure',
                names = 'Vehicle_Type',
                title='Total Advertising Expenditure by Vehicle Type')
        )

# Plot 4 bar chart for the effect of unemployment rate on vehicle type and sales
        unemp_rate = recession_data.groupby('Vehicle_Type')['Unemployment_Rate'].mean().reset_index()
        R_chart4 = dcc.Graph(
                    figure = px.bar(unemp_rate,
                    x = 'Vehicle_Type',
                    y = 'Unemployment_Rate',
                    title="Effects of Unemployment Rate on Automobile Sales by Vehicle Type"

                    )
        )


        return [
            html.Div(className='chart-item', children=[html.Div(children=R_chart1),html.Div(children=R_chart2)],style={'display': 'flex'}),
            html.Div(className='chart-item', children=[html.Div(children=R_chart3),html.Div(R_chart4)],style={'display': 'flex'})
            ]

# TASK 2.6: Create and display graphs for Yearly Report Statistics
 # Yearly Statistic Report Plots                             
    elif (input_year and selected_statistics=='Yearly Statistics') :
        yearly_data = data[data['Year'] == input_year]
                              
#TASK 2.5: Creating Graphs Yearly data
                              
#plot 1 Yearly Automobile sales using line chart for the whole period.
        yas= data.groupby('Year')['Automobile_Sales'].mean().reset_index()
        Y_chart1 = dcc.Graph(figure=px.line(
                            yas,
                            x = 'Year',
                            y = 'Automobile_Sales',
                            title='Automobile Sales for the Year'
        ))
            
# Plot 2 Total Monthly Automobile sales using line chart.
        mas = data.groupby('Month')['Automobile_Sales'].mean().reset_index()
        Y_chart2 = dcc.Graph(figure = px.line(
            mas,
            x = 'Month',
            y = 'Automobile_Sales',
            title = 'Automobile Sales by Month'
        ))

# Plot bar chart for average number of vehicles sold during the given year
        avr_vdata=yearly_data.groupby('Year')['Automobile_Sales'].mean().reset_index()
        Y_chart3 = dcc.Graph( figure = px.bar(avr_vdata,
        x = 'Year',
        y = 'Automobile_Sales',
        title='Average Vehicles Sold by Vehicle Type in the year {}'.format(input_year)))

# Total Advertisement Expenditure for each vehicle using pie chart
        exp_data = yearly_data.groupby('Vehicle_Type')['Advertising_Expenditure'].sum().reset_index()
        Y_chart4 = dcc.Graph(
            figure=px.pie(exp_data,
                values='Advertising_Expenditure',
                names='Vehicle_Type',
                title='Total Advertising Expenditure by Vehicle Type'))

#TASK 2.6: Returning the graphs for displaying Yearly data
        return [
                html.Div(className='chart-item', children=[html.Div(Y_chart1),html.Div(Y_chart2)],style={'display': 'flex'}),
                html.Div(className='chart-item', children=[html.Div(Y_chart3),html.Div(Y_chart4)],style={'display': 'flex'})
                ]
        
    else:
        return None

# Run the Dash app
if __name__ == '__main__':
    app.run_server(debug=True, port = 5001)

Hey @bmksinato welcome to the forums.

To start with, you’ll have to swap the function parameterse here:

1 Like