Issue in Dash table where pagination is not getting displayed

Hi Team,

Issue 1 - I created a dashboard and gave pagination fields but my output is not showing the pagination fields in the o/p. Though I have 150+ rows in the data, it is not showing pagination.
code is also attached.

Code Help - How to use dcc.Interval to call my getData() method only after every 2 hours?

import dash
import dash_table
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
from dash.dependencies import State, Input, Output

import pandas as pd
from bs4 import BeautifulSoup
import requests
import re

import numpy as np

def getdata():
    url="https://www.worldometers.info/coronavirus/"
    # Make a GET request to fetch the raw HTML content
    html_content = requests.get(url).text
    # Parse the html content
    soup = BeautifulSoup(html_content, "lxml")
    strlastdate=soup.find('div',text=re.compile("Last updated")).text
    gdp_table = soup.find("table", id = "main_table_countries_today")
    gdp_table_data = gdp_table.tbody.find_all("tr")

    # Getting all countries names
    dicts = {}
    for i in range(len(gdp_table_data)):
        try:
            key = (gdp_table_data[i].find_all('a', href=True)[0].string)
        except:
            key = (gdp_table_data[i].find_all('td')[0].string)

        value = [j.string for j in gdp_table_data[i].find_all('td')]
        dicts[key] = value
    live_data= pd.DataFrame(dicts).drop(0).T.iloc[:,:7]
    live_data.columns = ["Total Cases","New Cases", "Total Deaths", "New Deaths", "Total Recovered","Active","Serious Critical"]
    live_data.index.name = 'Country'
    live_data.iloc[:,:7].to_csv("input_data/base_data1.csv")
    df = pd.read_csv('input_data/base_data1.csv')
    df = df.replace(r'^\s*$', np.NaN, regex=True)
    col = ['Total Cases', 'New Cases', 'Total Deaths', 'New Deaths',
           'Total Recovered', 'Active', 'Serious Critical']
    for i in col:
        df[i] = df[i].str.replace(',', '')
        df[i] = df[i].fillna(0)
        df[i]=df[i].astype('int64')
    df.sort_values('Total Cases', ascending=False, inplace=True)
    df.sort_values('Total Cases', ascending=False, inplace=True)
    return(df,strlastdate)



app = dash.Dash()
df,strlastdate=getdata()

app.layout= html.Div([
                    html.H1('Corona Virus Dashboard - Latest Updates!'),
                    html.H3(strlastdate),
                    html.Div(style={'padding': 10}),
                    html.Div([dash_table.DataTable(
                                id='table',
                                columns=[{"name": i, "id": i, "selectable": True} for i in df.columns],
                                data=df.to_dict('records'),
                                filter_action="native",
                                sort_action="native",
                                sort_mode="single",
                                row_selectable="multi",
                                selected_rows=[],
                                page_action="native",
                                page_current= 0,
                                page_size= 15,
                                #style_as_list_view=True,
                                style_cell={'padding': '5px','backgroundColor': 'white',
                                                'color': 'black','border': '1px solid black' },
                                style_header={
                                    'backgroundColor': 'rgb(50, 50, 50)',
                                    'color': 'white',
                                    'fontWeight': 'bold',
                                    'border': '1px solid black' 
                                },
                                style_data={ 'border': '1px solid black' },
                                style_data_conditional=[
                                            {
                                                'if': {
                                                        'column_id': 'Total Deaths',
                                                        'filter_query': '{Total Deaths} > 10000'
                                                    },
                                                    'backgroundColor': '#FF0000',
                                                    'color': 'yellow',
                                            }
                                ]
                        )]),html.Div(id='datatable-interactivity-container'),
                                            dcc.Markdown('''
                                This is the [Data Source](https://www.worldometers.info/coronavirus/)
                                ''')
                      
                        
])

@app.callback(
    Output('datatable-interactivity-container', "children"),
    [Input('table', "derived_virtual_data"),
     Input('table', "derived_virtual_selected_rows")])
def update_graphs(rows, derived_virtual_selected_rows):
    
    if derived_virtual_selected_rows is None:
        derived_virtual_selected_rows = []
        
    dff = df if rows is None else pd.DataFrame(rows)

    colors = ['#FFBF00' if i in derived_virtual_selected_rows else '#FF0000'
              for i in range(len(dff))]

    return [
        dcc.Graph(
            id=column,
            figure={
                "data": [
                    {
                        "x": dff["Country"],
                        "y": dff[column],
                        "type": "bar",
                        "marker": {"color": colors},
                    }
                ],
                "layout": {
                    "xaxis": {"automargin": True},
                    "yaxis": {
                        "automargin": True,
                        "title": {"text": column}
                    },
                    "height": 250,
                    "margin": {"t": 10, "l": 10, "r": 10},
                },

            },
        )
        # check if column exists - user may have deleted it
        # If `column.deletable=False`, then you don't
        # need to do this check.
        for column in ["Total Cases", "Total Deaths", "New Cases"] #if column in dff
    ]


if __name__ == '__main__':
    app.run_server()