hi @kristada619
Welcome back to the community Forum.
One option is to not include it in the DataTable columns, similar to how I removed the Pressure column below:
from dash import Dash, dash_table
import pandas as pd
from collections import OrderedDict
data = OrderedDict(
[
("Date", ["2015-01-01", "2015-10-24", "2016-05-10", "2017-01-10", "2018-05-10", "2018-08-15"]),
("Region", ["Montreal", "Toronto", "New York City", "Miami", "San Francisco", "London"]),
("Temperature", [1, -20, 3.512, 4, 10423, -441.2]),
("Humidity", [10, 20, 30, 40, 50, 60]),
("Pressure", [2, 10924, 3912, -10, 3591.2, 15]),
]
)
df = pd.DataFrame(data)
app = Dash(__name__)
app.layout = dash_table.DataTable(
data=df.to_dict('records'),
columns=[{'id': c, 'name': c} for c in df.columns if c!="Pressure"]
)
if __name__ == '__main__':
app.run_server(debug=True)
Or you can automatically hide it, but it will still give the user the capability to unhide, I think.
from dash import Dash, html, dash_table
import pandas as pd
from collections import OrderedDict
data = OrderedDict(
[
("Date", ["2015-01-01", "2015-10-24", "2016-05-10", "2017-01-10", "2018-05-10", "2018-08-15"]),
("Region", ["Montreal", "Toronto", "New York City", "Miami", "San Francisco", "London"]),
("Temperature", [1, -20, 3.512, 4, 10423, -441.2]),
("Humidity", [10, 20, 30, 40, 50, 60]),
("Pressure", [2, 10924, 3912, -10, 3591.2, 15]),
]
)
df = pd.DataFrame(data)
app = Dash(__name__)
app.layout = html.Div([
html.Div(id='placeholder'),
dash_table.DataTable(
id="my-table",
data=df.to_dict('records'),
columns=[{'id': c, 'name': c} if c!="Pressure" else {'id': c, 'name': c, "hideable":True} for c in df.columns],
hidden_columns=['Pressure']
)
])
if __name__ == '__main__':
app.run_server(debug=True)