@nicolaskruchten – thank you for responding.
Firstly, here is my (toy) data set:
df = pd.DataFrame({'Make':['Ford', 'Ford', 'Ford', 'BMW', 'BMW', 'BMW', Mercedes', 'Mercedes', 'Mercedes'],
'Score':['88.6', '76.6', '100', '79.1', '86.8', '96.4', '97.3', '98.7', '98.5'],
'Dimension':['Speed', 'MPG', 'Styling', 'Speed', 'MPG', 'Styling', 'Speed', 'MPG', 'Styling'],
'Month':['Apr-19', 'Apr-19', 'Apr-19', 'Apr-19', 'Apr-19', 'Apr-19', 'Apr-19', 'Apr-19', 'Apr-19']})
Originally, I used go.Bar()
, but couldn’t figure out how to dynamically add n number of bars to the plot. So, I added them manually (knowing in advance that this particular data set contains 3 unique values for Make
). Here is that code:
fig_01 = go.Figure(data=[
go.Bar(name='Ford', x=df['Make'], y=df['Score'], text=df['Score'], textposition='auto'),
go.Bar(name='BMW', x=df['Make'], y=df['Score'], text=df['Score'], textposition='auto'),
go.Bar(name='Mercedes', x=df['Make']y=df['Score'], text=df['Score'], textposition='auto')
])
The problem with this approach is that it breaks once the number of unique values in Make
is anything other than 3.
Then, I stumbled upon px.bar()
, which seems to dynamically add the required number of bars for you. This is great!
Using px.bar()
, I’m tried to add some data labels to the bars using the text
and textposition
arguments that the go.Bar()
function offers.
And, here is full code:
import base64
import datetime
import io
import dash
from dash.dependencies import Input, Output, State
import dash_core_components as dcc
import dash_html_components as html
import plotly.express as px
import plotly.graph_objects as go
import dash_table
import pandas as pd
app = dash.Dash()
app.layout = html.Div([
dcc.Upload(
id='upload-data',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
# Allow multiple files to be uploaded
multiple=True
),
html.Div(id='output-data-upload'),
])
def parse_contents(contents, filename, date):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if 'csv' in filename:
# Assume that the user uploaded a CSV file
df = pd.read_csv(
io.StringIO(decoded.decode('utf-8')))
elif 'xls' in filename:
# Assume that the user uploaded an excel file
df = pd.read_excel(io.BytesIO(decoded))
except Exception as e:
print(e)
return html.Div([
'There was an error processing this file.'
])
return html.Div([
html.H5(filename),
html.H6(datetime.datetime.fromtimestamp(date)),
dash_table.DataTable(
data=df.to_dict('records'),
columns=[{'name': i, 'id': i} for i in df.columns]
),
html.Hr(), # horizontal line
dcc.Graph(
figure =
px.bar(df, x='Make', y='Score', color='Dimension', barmode='group', text='Score', textposition='auto'),
),
html.Hr(),
# For debugging, display the raw contents provided by the web browser
html.Div('Raw Content'),
html.Pre(contents[0:200] + '...', style={
'whiteSpace': 'pre-wrap',
'wordBreak': 'break-all'
})
])
@app.callback(Output('output-data-upload', 'children'),
[Input('upload-data', 'contents')],
[State('upload-data', 'filename'),
State('upload-data', 'last_modified')])
def update_output(list_of_contents, list_of_names, list_of_dates):
if list_of_contents is not None:
children = [
parse_contents(c, n, d) for c, n, d in
zip(list_of_contents, list_of_names, list_of_dates)]
return children
if __name__ == '__main__':
app.run_server(debug=True)
As you can see in bold text above, I tried:
px.bar(df, x='Make', y='Score', color='Dimension', barmode='group', text='Score', textposition='auto'),
But, that results in this error message:
TypeError: bar() got an unexpected keyword argument 'textposition'
Questions:
-
Is there a one-to-one mapping between the px.Bar()
arguments and the go.Bar()
arguments? Is it possible to control textposition
in px.Bar()
?
-
Why would one use go.Bar()
instead of px.Bar()
? (px.Bar
seems like it’s easier to use, but perhaps a bit less flexible)
-
Have I structured the code above in such a way that it conforms to “best practices” when using Plotly Dash? (or, as a complete newbie to Python, Plotly and Dash, have I completely “hacked” it together?) 
Thanks in advance!