Dropdown filtering for uploaded dataset

Hello everyone

I am creating a dash app, that allows the user to upload a csv file using the dcc.upload function.

When the csv is uploaded I want to the user to be able to filter the dataset by a dropdown, such that he can choose some value the column “var_name”. However, I am not sure how to access the uploaded dataset for filtering, I am only able to display the whole thing. Hope anyone can help. Here is my code:

import base64
import datetime
import io

import dash
import dash_table
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
from dash.dependencies import Input, Output, State

def df_to_table(df):
return html.Table(
# Header
[html.Tr([html.Th(col) for col in df.columns])] +

    # Body
    [
        html.Tr(
            [
                html.Td(df.iloc[i][col])
                for col in df.columns
            ]
        )
        for i in range(len(df))
    ]
)

external_stylesheets = [‘https://codepen.io/chriddyp/pen/bWLwgP.css’]

app = dash.Dash(name, external_stylesheets=external_stylesheets)

app.layout = html.Div([
html.Div([
dcc.Upload(
id=‘upload-data’,
children=html.Div([
'Drag and Drop eller ',
html.A(‘Vælg Fil’)
]),
style={
‘width’: ‘100%’,
‘height’: ‘60px’,
‘lineHeight’: ‘60px’,
‘borderWidth’: ‘1px’,
‘borderStyle’: ‘dashed’,
‘borderRadius’: ‘5px’,
‘textAlign’: ‘center’,
‘margin’: ‘10px’
},
# Allow multiple files to be uploaded
multiple=True
),
html.Div(id=‘output-data-upload’)
]),
html.Div([

    html.Div([
        html.H1('Vælg variabel'),
        dcc.Dropdown(
            id='var-choice',
            options=[{'label': i, 'value': i} for i in df['var_name'].unique()],
            value='Variabel'
        )
    ],
    style={'width': '48%', 'display': 'inline-block'})
        ]),

html.Div(
id=“my-table”,
className=“row”,
style={
“maxHeight”: “350px”,
“overflowY”: “scroll”,
“padding”: “8”,
“marginTop”: “5”,
“backgroundColor”:“white”,
“border”: “1px solid #C8D4E3”,
“borderRadius”: “3px”
},
),
# dash_table.DataTable(
# id=‘my-table’,
# columns=[{“name”: i, “id”: i} for i in df.columns],
# rows=df.to_dict(“data”))

])

show table from file upload

def parse_contents(contents, filename, date):
content_type, content_string = contents.split(’,’)

decoded = base64.b64decode(content_string)
try:
    if 'csv' in filename:
        # Assume that the user uploaded a CSV file
        df = pd.read_csv(
            io.StringIO(decoded.decode('utf-8')))
    elif 'xls' in filename:
        # Assume that the user uploaded an excel file
        df = pd.read_excel(io.BytesIO(decoded))
except Exception as e:
    print(e)
    return html.Div([
        'There was an error processing this file.'
    ])

return df, html.Div([
    html.H5(filename),
    html.H6(datetime.datetime.fromtimestamp(date)),

    dash_table.DataTable(
        data=df.to_dict('rows'),
        columns=[{'name': i, 'id': i} for i in df.columns],
        style_table={
                'maxHeight': '300',
                'overflowY': 'scroll'}
    ),

    html.Hr(),  # horizontal line

    # For debugging, display the raw contents provided by the web browser
    html.Div('Raw Content'),
    html.Pre(contents[0:200] + '...', style={
        'whiteSpace': 'pre-wrap',
        'wordBreak': 'break-all'
    })
])

@app.callback(Output(‘output-data-upload’, ‘children’),
[Input(‘upload-data’, ‘contents’)],
[State(‘upload-data’, ‘filename’),
State(‘upload-data’, ‘last_modified’)])

def update_output(list_of_contents, list_of_names, list_of_dates):
if list_of_contents is not None:
children = [
parse_contents(c, n, d) for c, n, d in
zip(list_of_contents, list_of_names, list_of_dates)]
return children

update table based on dropdown’s value and df updates

@app.callback(
Output(“my-table”, “children”),
[Input(“var-choice”, “value”)]
)
def update_table(status):
# df = pd.read_csv(‘data_[PFA_scaproc.txt]_20190401_114903.csv’)
df = df[df[‘var_name’] == status]

# df = df[["CreatedDate", "Status", "Company", "State", "LeadSource"]]
return df_to_table(df)

if name == ‘main’:
app.run_server(debug=True)