Data Visualization Suggestion

All,
I am using plotly 4.8.2 and python 3.7.7. I have some time-series data and a bunch of boolean flags built as metadata on the data. I would like to see what is a good way to visualize this data using plotly. Here is an example snippet of what I have:

import pandas as pd
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from plotly.offline import plot

# Generate some random data
date_rng = pd.date_range(start='1/1/2018', end='12/31/2018', freq='H')
df = pd.DataFrame(date_rng, columns=['date'])
df['A'] = np.random.randint(0,100,size=(len(date_rng)))
df['B'] = np.random.randint(0,100,size=(len(date_rng)))
df['C'] = np.random.randint(0,100,size=(len(date_rng)))
df.set_index("date", inplace=True)

# Implement a basic filter
for column in df.columns:
    df[column + "_lowflag"] = df[column] < 10
    df[column + "_highflag"] = df[column] > 90

# Prepare a sample figure
fig = make_subplots(rows=2, cols=1, shared_xaxes=True)
fig.update_layout(template="gridon", title_text="Filter Visualization Question", xaxis_title="Dates", yaxis_title="Random Data")
for column in df.columns:
    if "flag" not in column:
        fig.add_trace(go.Scatter(
            x=df.index,
            y=df[column],
            name=column
        ),
            row=1,
            col=1
        )

# Add filters to subplot 2
for column in df.columns:
    if "flag" in column:
        fig.add_trace(go.Scatter(
            x=df.index,
            y=df[column],
            marker=dict(color="black", size=6),
            mode="markers"
        ),
            row=2,
            col=1
        )

# Update figure layout to auto-adjust by screen size
fig.update_layout(
    autosize=True
    # width=700,
    # height=700
)
plot(
    fig,
    auto_open=True
)

Two issues I see with this is, it is very hard to distinguish between different boolean flags when there are multiple boolean flags like I do and additionally the plot is really slow. I am not opposed to using Dash, but I don’t want to go to Dash unless it is the only way to do it or unless it simplifies the problem. All constructive suggestions are welcome.

Thanks

bump ? looking for some help