Plotly Dashoard not displaying graphs fully

I would appreciate the help. This is my whole code and I am attaching a pic of the dash showing the graphs not working

Import Dependencies

import dash

import dash_core_components as dcc

import dash_html_components as html

import pandas as pd

import plotly.graph_objs as go

import plotly.express as px

from dash.dependencies import Input, Output

from keras.models import load_model

from sklearn.preprocessing import MinMaxScaler

import numpy as np

Style

external_stylesheets = [‘https://codepen.io/chriddyp/pen/bWLwgP.css’]

App setup

app = dash.Dash(name)

colors = {

'background': '#111111',

'text': '#7FDBFF'

}

server = app.server

scaler = MinMaxScaler(feature_range=(0,1))

bynd_df = pd.read_csv(“Datasets/BYND.csv”)

bynd_df[“Date”] = pd.to_datetime(bynd_df.Date, format="%Y-%m-%d")

bynd_df.index = bynd_df[‘Date’]

data = bynd_df.sort_index(ascending=True,axis=0)

new_data = pd.DataFrame(index=range(0,len(bynd_df)), columns=[‘Date’,’ Close’])

for i in range(0,len(data)):

new_data["Date"][i]=data['Date'][i]

new_data[" Close"][i]=data[" Close"][i]

new_data.index = new_data.Date

new_data.drop(“Date”,axis=1,inplace=True)

dataset = new_data.values

train = dataset[0:300,:]

valid = dataset[300:,:]

scaler = MinMaxScaler(feature_range=(0,1))

scaled_data = scaler.fit_transform(dataset)

x_train,y_train =,

for i in range(60,len(train)):

x_train.append(scaled_data[i-60:i,0])

y_train.append(scaled_data[i,0])

x_train,y_train = np.array(x_train),np.array(y_train)

x_train = np.reshape(x_train,(x_train.shape[0],x_train.shape[1],1))

model = load_model(“final_model.h5”)

inputs = new_data[len(new_data)-len(valid)-60:].values

inputs = inputs.reshape(-1,1)

inputs = scaler.transform(inputs)

X_test =

for i in range(60,inputs.shape[0]):

X_test.append(inputs[i-60:i,0])

X_test = np.array(X_test)

X_test = np.reshape(X_test,(X_test.shape[0],X_test.shape[1],1))

closing_price = model.predict(X_test)

closing_price = scaler.inverse_transform(closing_price)

train = new_data[:300]

valid = new_data[300:]

valid[‘Predictions’] = closing_price

Adding Data with the different stocks

shorted = pd.read_csv(“Datasets/multiplestock.csv”)

app.layout = html.Div([

html.H1("Price Action Analysis", style={"textAlign": "center", 'fontcolor': 'blue'}),

dcc.Tabs(id="tabs", children=[

    dcc.Tab(label = 'Beyond Meat (BYND) Stock', children = [

        html.Div([

            html.H2("Closing Price", style ={"textAlign": "center"}),

            dcc.Graph(

                id ="Closing Price",

                figure ={

                    "data": [

                        go.Scatter(

                            x =train.index,

                            y =valid[" Close"],

                            mode ='lines+markers'

                        )

                    ],

                    "layout": go.Layout(

                        title ='Scatter Plot',

                        xaxis ={"title": 'Date'},

                        yaxis ={'title': 'Closing Rate'}

                    )

                }

            ),

            html.H2("LSTM Model Predicted Closing Price", style= {"textAlign": "center"}),

            dcc.Graph(

                id ="Predicted Closing Price Results",

                figure ={

                    "data":[

                        go.Scatter(

                            x =valid.index,

                            y =valid["Predictions"],

                            mode ='lines+markers'

                        )

                    ],

                    "layout": go.Layout(

                        title ='Scatter Plot',

                        xaxis ={"title": 'Date'},

                        yaxis ={'title': 'Closing Rate'}

                    )

                }

            )

        ])

    ]),

    dcc.Tab(label ='Multiple Stocks Data', children =[

        html.Div([

            html.H1("High Vs. Lows (VNFTF)", style ={'textAlign': 'center'}),

            dcc.Dropdown(id ='my-dropdown',

                         options =[{'label': 'Vanguard REIT ETF', 'value': 'VNFTF'},

                                  {'label': 'Tesla','value': 'TSLA'}, 

                                  {'label': 'ROKU', 'value': 'ROKU'}], 

                         multi =True, value =['VNFTF'],

                         style ={"display": "block", "margin-left": "auto", 

                                "margin-right": "auto", "width": "60%"}),

            dcc.Graph(id ='highlow'), 

            html.H1("Market Volume", style ={'textAlign': 'center'}),

     

            dcc.Dropdown(id='my-dropdown2',  

                         options =[{'label': 'Vanguard REIT ETF', 'value': 'VNFTF'},

                                  {'label': 'Tesla','value': 'TSLA'}, 

                                  {'label': 'Roku', 'value': 'ROKU'}], 

                         multi =True, value =['VNFTF'],

                         style ={"display": "block", "margin-left": "auto", 

                                "margin-right": "auto", "width": "60%"}),

            dcc.Graph(id ='volume')

        ], className ="container"),

    ])

])

])

Callback app

@app.callback(Output(‘highlow’, ‘figure’),

          [Input('my-dropdown', 'value')])

def update_graph(selected_dropdown):

dropdown = {"VNFTF": "Vanguard REIT ETF", "TSLA": "Tesla","ROKU": "Roku"}

trace1 = []

trace2 = []

for stock in selected_dropdown:

    trace1.append(

      go.Scatter(x =shorted[shorted["Symbol"] == stock]["Date"],

                 y =shorted[shorted["Symbol"] == stock][" High"],

                 mode ='lines+markers', opacity=0.7, 

                 name =f'High {dropdown[stock]}',textposition='bottom center'))

    trace2.append(

      go.Scatter(x =shorted[shorted["Symbol"] == stock]["Date"],

                 y =shorted[shorted["Symbol"] == stock][" Low"],

                 mode ='lines+markers', opacity=0.6,

                 name =f'Low {dropdown[stock]}',textposition='bottom center'))

traces = [trace1, trace2]

data = [val for sublist in traces for val in sublist]

figure = {'data': data,

          'layout': go.Layout(colorway=["#5E0DAC", '#FF4F00', '#375CB1', 

                                        '#FF7400', '#FFF400', '#FF0056'],

        height =600,

        title =f"High and Low Prices for {', '.join(str(dropdown[i]) for i in selected_dropdown)} Over Time",

        xaxis ={"title":"Date",

               'rangeselector': {'buttons': list([{'count': 1, 'label': '1M', 

                                                   'step': 'month', 

                                                   'stepmode': 'backward'},

                                                  {'count': 6, 'label': '6M', 

                                                   'step': 'month', 

                                                   'stepmode': 'backward'},

                                                  {'step': 'all'}])},

               'rangeslider': {'visible': True}, 'type': 'date'},

         yaxis ={"title":"Price (USD)"})}

return figure

@app.callback(Output(‘volume’, ‘figure’),

[Input(‘my-dropdown2’, ‘value’)])

def update_graph_selected(selected_dropdown_value):

dropdown = {“VNFTF”: “Vanguard REIT ETF”, “TSLA”: “Tesla”, “ROKU”: “Roku”}

trace1 =

for stock in selected_dropdown_value:

trace1.append(

go.Scatter(x =shorted[shorted[“Symbol”] == stock][“Date”],

y =shorted[shorted[“Symbol”] == stock][" Volume"],

mode =‘lines+markers’, opacity =0.7,

name =f’Volume {dropdown[stock]}’, textposition =‘bottom center’))

traces = [trace1]

data = [val for sublist in traces for val in sublist]

figure = {‘data’: data,

‘layout’: go.Layout(colorway =["#5E0DAC", ‘#FF4F00’, ‘#375CB1’,

#FF7400’, ‘#FFF400’, ‘#FF0056’],

height =600,

title =f"Market Volume for {’, '.join(str(dropdown[i]) for i in selected_dropdown_value)} Over Time",

xaxis ={“title”:“Date”,

‘rangeselector’: {‘buttons’: list([{‘count’: 1, ‘label’: ‘1M’,

‘step’: ‘month’,

‘stepmode’: ‘backward’},

{‘count’: 6, ‘label’: ‘6M’,

‘step’: ‘month’,

‘stepmode’: ‘backward’},

{‘step’: ‘all’}])},

‘rangeslider’: {‘visible’: True}, ‘type’: ‘date’},

yaxis ={“title”:“Trading Volume”})}

return figure

if name==‘main’:

app.run_server(debug=True)