Hi @remidm,
Yes, you can do that. If you set the background with a dark color and use opacity to lighten it, then it will work for both themes. For example, in your outer container you can add:
className=“dbc bg-opacity-10 bg-black”
Note that if you use variable names --bs-body
is light in light themes and dark in dark themes.
Here’s the sample app - note it uses the dbc class that updates the dcc components as well. Try running it locally:
from dash import Dash, dcc, html, dash_table, Input, Output, callback
import plotly.express as px
import dash_bootstrap_components as dbc
from dash_bootstrap_templates import ThemeSwitchAIO
# select the Bootstrap stylesheet2 and figure template2 for the theme toggle here:
template_theme1 = "minty"
template_theme2 = "cyborg"
url_theme1 = dbc.themes.MINTY
url_theme2 = dbc.themes.CYBORG
df = px.data.gapminder()
years = df.year.unique()
continents = df.continent.unique()
# stylesheet with the .dbc class
dbc_css = "https://cdn.jsdelivr.net/gh/AnnMarieW/dash-bootstrap-templates/dbc.min.css"
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP, dbc_css])
header = html.H4(
"Theme Explorer Sample App", className="bg-primary text-white p-2 mb-2 text-center"
)
table = dash_table.DataTable(
id="table",
columns=[{"name": i, "id": i, "deletable": True} for i in df.columns],
data=df.to_dict("records"),
page_size=10,
editable=True,
cell_selectable=True,
filter_action="native",
sort_action="native",
style_table={"overflowX": "auto"},
)
dropdown = html.Div(
[
dbc.Label("Select indicator (y-axis)"),
dcc.Dropdown(
["gdpPercap", "lifeExp", "pop"],
"pop",
id="indicator",
clearable=False,
),
],
className="mb-4",
)
checklist = html.Div(
[
dbc.Label("Select Continents"),
dbc.Checklist(
id="continents",
options=[{"label": i, "value": i} for i in continents],
value=continents,
inline=True,
),
],
className="mb-4",
)
slider = html.Div(
[
dbc.Label("Select Years"),
dcc.RangeSlider(
years[0],
years[-1],
5,
id="years",
marks=None,
tooltip={"placement": "bottom", "always_visible": True},
value=[years[2], years[-2]],
),
],
className="mb-4",
)
theme_colors = [
"primary",
"secondary",
"success",
"warning",
"danger",
"info",
"light",
"dark",
"link",
]
colors = html.Div(
[dbc.Button(f"{color}", color=f"{color}", size="sm") for color in theme_colors]
)
colors = html.Div(["Theme Colors:", colors], className="my-2")
controls = dbc.Card(
[dropdown, checklist, slider],
body=True,
)
tab1 = dbc.Tab([dcc.Graph(id="line-chart")], label="Line Chart")
tab2 = dbc.Tab([dcc.Graph(id="scatter-chart")], label="Scatter Chart")
tab3 = dbc.Tab([table], label="Table", className="p-4")
tabs = dbc.Tabs([tab1, tab2, tab3])
app.layout = dbc.Container(
[
header,
dbc.Row(
[
dbc.Col(
[
controls,
ThemeSwitchAIO(aio_id="theme", themes=[url_theme1, url_theme2])
],
width=4,
),
dbc.Col([tabs, colors], width=8),
]
),
],
fluid=True,
className="dbc bg-opacity-10 bg-black mb-4",
)
@callback(
Output("line-chart", "figure"),
Output("scatter-chart", "figure"),
Output("table", "data"),
Input("indicator", "value"),
Input("continents", "value"),
Input("years", "value"),
Input(ThemeSwitchAIO.ids.switch("theme"), "value"),
)
def update_line_chart(indicator, continent, yrs, toggle):
if continent == [] or indicator is None:
return {}, {}, []
dff = df[df.year.between(yrs[0], yrs[1])]
dff = dff[dff.continent.isin(continent)]
data = dff.to_dict("records")
fig = px.line(
dff,
x="year",
y=indicator,
color="continent",
line_group="country",
template=template_theme1 if toggle else template_theme2
)
fig_scatter = px.scatter(
df.query(f"year=={yrs[1]} & continent=={continent}"),
x="gdpPercap",
y="lifeExp",
size="pop",
color="continent",
log_x=True,
size_max=60,
template=template_theme1 if toggle else template_theme2
)
return fig, fig_scatter, data
if __name__ == "__main__":
app.run_server(debug=True)