Hi, I have created an app that can let the user upload a CSV file and two dropdowns that can let the user choose which column of the CSV file plot at the x-axis and y-axis of the bar chart. I want the value plot at the y-axis is the mean of the column chosen by the user. For example, the x-axis has different country name and the y-axis is the average population of the different countries. But i get an error after i try add .mean() inside the code. Can anyone teach me how to do it?
This is my code:
import base64
import io
import dash
from dash.dependencies import Input, Output, State
import dash_core_components as dcc
import dash_html_components as html
import dash_table
import pandas as pd
from dash.exceptions import PreventUpdate
import plotly.graph_objs as go
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div([
dcc.Upload(
id='datatable-upload',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%', 'height': '60px', 'lineHeight': '60px',
'borderWidth': '1px', 'borderStyle': 'dashed',
'borderRadius': '5px', 'textAlign': 'center', 'margin': '10px'
},
),
dash_table.DataTable(id='datatable-upload-container'),
html.Div(id='output-data-upload'),
dcc.Dropdown(
id='data_selector1',
options=[
{'label': '', 'value': ''}
],
value=[]
),
dcc.Dropdown(
id='data_selector2',
options=[
{'label': '', 'value': ''}
],
value=[]
),
dcc.Graph(id='datatable-upload-graph')
])
def parse_contents(contents, filename):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
if 'csv' in filename:
# Assume that the user uploaded a CSV file
return pd.read_csv(
io.StringIO(decoded.decode('utf-8')))
elif 'xls' in filename:
# Assume that the user uploaded an excel file
return pd.read_excel(io.BytesIO(decoded))
@app.callback(Output('data_selector1', 'options'),
[Input('datatable-upload-container', 'data')])
def update_dropdown(rows):
if rows is None:
raise PreventUpdate
df = pd.DataFrame(rows)
print('updating menus')
columns=df.columns
col_labels=[{'label' :k, 'value' :k} for k in columns]
return col_labels
@app.callback(Output('data_selector2', 'options'),
[Input('datatable-upload-container', 'data')])
def update_dropdown1(rows):
if rows is None:
raise PreventUpdate
df = pd.DataFrame(rows)
print('updating menus')
columns=df.columns
col_labels=[{'label' :k, 'value' :k} for k in columns]
return col_labels
@app.callback(Output('datatable-upload-container', 'data'),
[Input('datatable-upload', 'contents')],
[State('datatable-upload', 'filename')])
def update_output(contents, filename):
if contents is None:
return [{}]
df = parse_contents(contents, filename)
data = df.to_dict('records')
return data
@app.callback(Output('datatable-upload-graph', 'figure'),
[Input('data_selector1', 'value'),
Input('data_selector2', 'value')],
[State('datatable-upload-container', 'data')])
def display_graph(value1, value2, rows):
df = pd.DataFrame(rows)
trace1 = go.Bar(x=df[value1], y=df[value2].mean(), name='Active')
return {
'data': [trace1]
}
if __name__ == '__main__':
app.run_server(debug=False)