Dash Open Source does not work on Azure Jupyter Notebooks

I use Azure ML workspace and Jupyter Notebooks, where we are able to install any packages.

#Install jupyter dash in the selected Kernel

%pip install jupyter-dash

%pip install plotly

%pip install ipywidgets

from jupyter_dash import JupyterDash

import dash

from dash import dcc

from dash import html

import pandas as pd

df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')

available_indicators = df['Indicator Name'].unique()
from jupyter_dash.comms import _send_jupyter_config_comm_request

_send_jupyter_config_comm_request()
from jupyter_dash import JupyterDash as Dash

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']

app = JupyterDash(__name__, external_stylesheets=external_stylesheets)

# Create server variable with Flask server object for use with gunicorn
server = app.server

app.layout = html.Div([
    html.Div([

        html.Div([
            dcc.Dropdown(
                id='crossfilter-xaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Fertility rate, total (births per woman)'
            ),
            dcc.RadioItems(
                id='crossfilter-xaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ],
        style={'width': '49%', 'display': 'inline-block'}),

        html.Div([
            dcc.Dropdown(
                id='crossfilter-yaxis-column',
                options=[{'label': i, 'value': i} for i in available_indicators],
                value='Life expectancy at birth, total (years)'
            ),
            dcc.RadioItems(
                id='crossfilter-yaxis-type',
                options=[{'label': i, 'value': i} for i in ['Linear', 'Log']],
                value='Linear',
                labelStyle={'display': 'inline-block'}
            )
        ], style={'width': '49%', 'float': 'right', 'display': 'inline-block'})
    ], style={
        'borderBottom': 'thin lightgrey solid',
        'backgroundColor': 'rgb(250, 250, 250)',
        'padding': '10px 5px'
    }),

    html.Div([
        dcc.Graph(
            id='crossfilter-indicator-scatter',
            hoverData={'points': [{'customdata': 'Japan'}]}
        )
    ], style={'width': '49%', 'display': 'inline-block', 'padding': '0 20'}),
    html.Div([
        dcc.Graph(id='x-time-series'),
        dcc.Graph(id='y-time-series'),
    ], style={'display': 'inline-block', 'width': '49%'}),

    html.Div(dcc.Slider(
        id='crossfilter-year--slider',
        min=df['Year'].min(),
        max=df['Year'].max(),
        value=df['Year'].max(),
        marks={str(year): str(year) for year in df['Year'].unique()},
        step=None
    ), style={'width': '49%', 'padding': '0px 20px 20px 20px'})
])


@app.callback(
    dash.dependencies.Output('crossfilter-indicator-scatter', 'figure'),
    [dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value'),
     dash.dependencies.Input('crossfilter-year--slider', 'value')])
def update_graph(xaxis_column_name, yaxis_column_name,
                 xaxis_type, yaxis_type,
                 year_value):
    dff = df[df['Year'] == year_value]

    return {
        'data': [dict(
            x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],
            y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],
            text=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],
            customdata=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'],
            mode='markers',
            marker={
                'size': 25,
                'opacity': 0.7,
                'color': 'orange',
                'line': {'width': 2, 'color': 'purple'}
            }
        )],
        'layout': dict(
            xaxis={
                'title': xaxis_column_name,
                'type': 'linear' if xaxis_type == 'Linear' else 'log'
            },
            yaxis={
                'title': yaxis_column_name,
                'type': 'linear' if yaxis_type == 'Linear' else 'log'
            },
            margin={'l': 40, 'b': 30, 't': 10, 'r': 0},
            height=450,
            hovermode='closest'
        )
    }


def create_time_series(dff, axis_type, title):
    return {
        'data': [dict(
            x=dff['Year'],
            y=dff['Value'],
            mode='lines+markers'
        )],
        'layout': {
            'height': 225,
            'margin': {'l': 20, 'b': 30, 'r': 10, 't': 10},
            'annotations': [{
                'x': 0, 'y': 0.85, 'xanchor': 'left', 'yanchor': 'bottom',
                'xref': 'paper', 'yref': 'paper', 'showarrow': False,
                'align': 'left', 'bgcolor': 'rgba(255, 255, 255, 0.5)',
                'text': title
            }],
            'yaxis': {'type': 'linear' if axis_type == 'Linear' else 'log'},
            'xaxis': {'showgrid': False}
        }
    }


@app.callback(
    dash.dependencies.Output('x-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-xaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-xaxis-type', 'value')])
def update_y_timeseries(hoverData, xaxis_column_name, axis_type):
    country_name = hoverData['points'][0]['customdata']
    dff = df[df['Country Name'] == country_name]
    dff = dff[dff['Indicator Name'] == xaxis_column_name]
    title = '<b>{}</b><br>{}'.format(country_name, xaxis_column_name)
    return create_time_series(dff, axis_type, title)


@app.callback(
    dash.dependencies.Output('y-time-series', 'figure'),
    [dash.dependencies.Input('crossfilter-indicator-scatter', 'hoverData'),
     dash.dependencies.Input('crossfilter-yaxis-column', 'value'),
     dash.dependencies.Input('crossfilter-yaxis-type', 'value')])
def update_x_timeseries(hoverData, yaxis_column_name, axis_type):
    dff = df[df['Country Name'] == hoverData['points'][0]['customdata']]
    dff = dff[dff['Indicator Name'] == yaxis_column_name]
    return create_time_series(dff, axis_type, yaxis_column_name)

app.run_server obviously doesnt work because the IP is localhost. Doing it inline, creates an iframe within the environment and also doesnt show anything due to refuse to connect.

Not sure what can I do here