That case is using the “fips-unemp-16.csv” as the source of the value for the choropleth.
What I want is this situation, but where the source of the unemployment data is a properties value in the geojson itself.
So for example if the county geojson looked like this [I added the UNEMP to the geojson dictionary]:
{'type': 'Feature',
'properties': {'GEO_ID': '0500000US01001',
'STATE': '01',
'COUNTY': '001',
'NAME': 'Autauga',
'LSAD': 'County',
**'UNEMP': 5.3,**
'CENSUSAREA': 594.436},
'geometry': {'type': 'Polygon',
'coordinates': [[[-86.496774, 32.344437],
[-86.717897, 32.402814],
[-86.814912, 32.340803],
[-86.890581, 32.502974],
[-86.917595, 32.664169],
[-86.71339, 32.661732],
[-86.714219, 32.705694],
[-86.413116, 32.707386],
[-86.411172, 32.409937],
[-86.496774, 32.344437]]]},
'id': '01001'}
I am currently loading the geojson, looping through to strip out the properties to create a dataframe, and then putting it into the code as demonstrated. But this seems fairly inefficient. What I am wondering is if there is a setup that feeds the data / location info directly from the geojson rather than merging the geojson onto a dataframe.