I’ve been struggling with to create an filter that let me have selected_rows displayed in another table. I’m using this code
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
from dash.dependencies import Input, Output, State
from dash_table import DataTable
#Define sample dataframes with the same columns
df1 = pd.DataFrame({'Category': ['A', 'B', 'C'], 'Value': [1, 2, 3], 'tipo': ['Direita','Esquerda','Direita']})
df2 = pd.DataFrame({'Category': ['D', 'E', 'F'], 'Value': [5, 6, 7], 'tipo': ['Esquerda','Direita','Esquerda']})
lista_filtros = df1['tipo'].unique()
# Define Dash app
app = dash.Dash(__name__)
app.config.suppress_callback_exceptions = True
# Define dropdown options
dropdown_options = [{'label': 'Dataframe 1', 'value': 'df1'},
{'label': 'Dataframe 2', 'value': 'df2'}]
# Define layout
app.layout = html.Div([
dcc.Dropdown(
id='dropdown',
options=dropdown_options,
value='df1'
),
dcc.Checklist(
id='type-checklist',
options=[{'label': i, 'value': i} for i in lista_filtros] + [{'label': 'All', 'value': 'All'}],
value=['All']
),
html.Br(),
DataTable(
id='table',
row_selectable='multi',
selected_rows=[],
page_size=15
),
html.Button('Submit', id='submit-button', n_clicks=0),
dcc.Store(id='selected-rows', storage_type='session'),
html.Br(),
html.Div([
DataTable(
id='selected-data',
columns=[{'name': 'Category', 'id': 'Category'}, {'name': 'Value', 'id': 'Value'}],
page_size=5,
row_deletable= True,
)
], id='selected-data-container', style={'display': 'none'})
])
# Define callback to update table based on dropdown selection and type checklist
@app.callback(
Output('table', 'data'),
[Input('dropdown', 'value'), Input('type-checklist', 'value')]
)
def update_table(selected_value, selected_type):
if selected_value == 'df1':
df = df1
elif selected_value == 'df2':
df = df2
else:
return []
all_selected = 'All' in selected_type
if all_selected:
return df.to_dict('records')
else:
filtered_df = df[df['tipo'].isin(selected_type)]
# preserve original order of rows
filtered_df = filtered_df.set_index('tipo')
filtered_df = filtered_df.loc[selected_type]
filtered_df = filtered_df.reset_index()
return filtered_df.to_dict('records')
# Define callback to store selected rows in dcc.Store
@app.callback(
Output('selected-rows', 'data'),
[Input('submit-button', 'n_clicks')],
[State('table', 'selected_rows')]
)
def store_selected_rows(n_clicks, selected_rows):
if selected_rows:
return selected_rows
# Define callback to update selected data table visibility and content
@app.callback(
[Output('selected-data-container', 'style'),
Output('selected-data', 'columns'),
Output('selected-data', 'data')],
[Input('selected-rows', 'data')],
[State('selected-data', 'data'),
State('dropdown', 'value')]
)
def update_selected_data(selected_rows, stored_data, selected_value):
if selected_rows:
# get selected rows from selected dataframe
if selected_value == 'df1':
selected_df = df1.iloc[selected_rows]
elif selected_value == 'df2':
selected_df = df2.iloc[selected_rows]
else:
selected_df = pd.DataFrame()
# add new selected data to stored data
if stored_data is not None:
stored_df = pd.DataFrame(stored_data)
stored_df = stored_df.append(selected_df, ignore_index=True)
stored_data = stored_df.to_dict('records')
else:
stored_data = selected_df.to_dict('records')
# get columns for selected data table
selected_columns = [{'name': i, 'id': i} for i in selected_df.columns]
# return updated values
return {'display': 'block'}, selected_columns, stored_data
else:
# return default values
return {'display': 'none'}, [], None
# Run the app
if __name__ == '__main__':
app.run_server(debug=True)
The dashboard works well until I select a parameter other than “all” for my “selected_type” checklist.
This is because I am having issues with the index that the “selected_rows.data” parameter returns to me.
For example, if I use the filter “right”, what I will see is the “category = B”, which is index 0 of my “id = table” after being filtered.
However, when I press the “submit” button, my function uses index 0 in the original table before it was filtered, so I receive the data “Category = A”.
This is more of a Python problem than a Dash problem, but the use of callbacks has made it difficult for me to solve, resulting in various errors when I try to recreate a new filtered dataframe within the “updated_selected_data” function.
I just need my table to reflect exactly the data I am seeing in the previous table, and this can probably be done quite easily using any parameter other than the index. Any ideas on how I can solve this problem?