✊🏿 Black Lives Matter. Please consider donating to Black Girls Code today.
⚡️ Concerned about the grid? Kyle Baranko teaches how to predicting peak loads using XGBoost. Register for the August webinar!

Axis not displaying all records - result is truncated and shows only few entries

Ok have searched this forum, read on the internet and stackoverf…
I am new to all of this with plotly and python/pandas in general so please understand that I just a hobbyist.

What I would like to show are all the x axis labels for dates. Now there are just a few.
My “code” looks like this -

#-------------------------------------------------------------start
fig = go.Figure()

# Add traces
fig.add_trace(go.Scatter(x=FinDF['Report_Date_as_YYYY-MM-DD'], y=FinDF['Changes1'],
                    mode='lines',
                    name='Item1'))
fig.add_trace(go.Scatter(x=FinDF['Report_Date_as_YYYY-MM-DD'], y=FinDF['Changes2'],
                    mode='lines',
                    name='Item2))
fig.add_trace(go.Scatter(x=FinDF['Report_Date_as_YYYY-MM-DD'], y=FinDF['Changes3'],
                    mode='lines',
                    name='Item3'))


fig.update_layout(title="Diff",
                  xaxis_title="Date",
                  yaxis_title="Data",
                  font=dict(family="Courier New, monospace",size=12,color="#000"))

#xaxis=dict(tickformat='%b %d,%Y',tickmode='linear')

fig.update_xaxes(tickangle=90, tickformat='%Y-%m-%d',tickmode='linear')

fig.write_image("images/changes.png", width=1280, height=720)

#--------------------------------------------------------------end

The dataFrame column of FinDF[‘Report_Date_as_YYYY-MM-DD’] contains dates in format as 2020-01-01

What am I doing wrong?

With linear it looks like it only ads +1 in date instead of actually adding the corresponding dates in column of dataframe.

I also tried

fig.update_layout(xaxis_type='category')

and this works - however the dates and chart is mirrored. Which is obvious now when I think of it since the first record is the latest data. How to fix it?

0     2020-06-30
1     2020-06-23
2     2020-06-16
3     2020-06-09
4     2020-06-02
5     2020-05-26
6     2020-05-19
7     2020-05-12
8     2020-05-05
9     2020-04-28
10    2020-04-21
11    2020-04-14
12    2020-04-07
13    2020-03-31
14    2020-03-24
15    2020-03-17
16    2020-03-10
17    2020-03-03
18    2020-02-25
19    2020-02-18
20    2020-02-11
21    2020-02-04
22    2020-01-28
23    2020-01-21
24    2020-01-14
25    2020-01-07
Name: Report_Date_as_YYYY-MM-DD, dtype: object

Looks like this did the trick -

fig.update_layout(xaxis= dict(type='category', categoryorder = "category ascending"))