Hi lahyouness
Here is a code  with a little modification made by me , I hope can help you.
https://dash.plotly.com/datatable/conditional-formatting#highlighting-with-a-colorscale-on-a-single-column
import dash
import dash_html_components as html
import dash_table
import pandas as pd
from collections import OrderedDict
wide_data = [
    {'Firm': 'Acme', '2017': 13, '2018': 5, '2019': 10, '2020': 4},
    {'Firm': 'Olive', '2017': 3, '2018': 3, '2019': 13, '2020': 3},
    {'Firm': 'Barnwood', '2017': 6, '2018': 7, '2019': 3, '2020': 6},
    {'Firm': 'Olive', '2017': 3, '2018': 3, '2019': 13, '2020': 3},
    {'Firm': 'Barnwood', '2017': 6, '2018': 7, '2019': 3, '2020': 6},
    {'Firm': 'Olive', '2017': 3, '2018': 4, '2019': 13, '2020': 3},
    {'Firm': 'Barnwood', '2017': 6, '2018': 3, '2019': 3, '2020': 6},
    {'Firm': 'Olive', '2017': 3, '2018': 2, '2019': 13, '2020': 3},
    {'Firm': 'Barnwood', '2017': 6, '2018': 1, '2019': 3, '2020': 6},
    {'Firm': 'Henrietta', '2017': -3, '2018': -10, '2019': -5, '2020': -6},
]
df = pd.DataFrame(wide_data)
app = dash.Dash(__name__)
def discrete_background_color_bins(df, n_bins=8, columns='all'):
    import colorlover
    bounds = [i * (1.0 / n_bins) for i in range(n_bins + 1)]
    if columns == 'all':
        if 'id' in df:
            df_numeric_columns = df.select_dtypes('number').drop(['id'], axis=1)
        else:
            df_numeric_columns = df.select_dtypes('number')
    else:
        df_numeric_columns = df[columns]
    df_max = df_numeric_columns.max().max()
    df_min = df_numeric_columns.min().min()
    ranges = [
        ((df_max - df_min) * i) + df_min
        for i in bounds
    ]
    styles = []
    legend = []
    for i in range(1, len(bounds)):
        min_bound = ranges[i - 1]
        max_bound = ranges[i]
        backgroundColor = colorlover.scales[str(n_bins)]['seq']['Reds'][i - 1]
        color = 'white' if i > len(bounds) / 2. else 'inherit'
        for column in df_numeric_columns:
            styles.append({
                'if': {
                    'filter_query': (
                        '{{{column}}} >= {min_bound}' +
                        (' && {{{column}}} < {max_bound}' if (i < len(bounds) - 1) else '')
                    ).format(column=column, min_bound=min_bound, max_bound=max_bound),
                    'column_id': column
                },
                'backgroundColor': backgroundColor,
                'color': color
            })
        legend.append(
            html.Div(style={'display': 'inline-block', 'width': '60px'}, children=[
                html.Div(
                    style={
                        'backgroundColor': backgroundColor,
                        'borderLeft': '1px rgb(50, 50, 50) solid',
                        'height': '10px'
                    }
                ),
                html.Small(round(min_bound, 2), style={'paddingLeft': '2px'})
            ])
        )
    return (styles, html.Div(legend, style={'padding': '5px 0 5px 0'}))
(styles, legend) = discrete_background_color_bins(df, columns=['2018'])
app.layout = html.Div([
    legend,
    dash_table.DataTable(
        data=df.to_dict('records'),
        sort_action='native',
        columns=[{'name': i, 'id': i} for i in df.columns],
        style_data_conditional=styles
    )
])
if __name__ == '__main__':
    app.run_server(debug=True)