@mcpcpc, Yes you are right in the case of Splom
or scatter_matrix
we canโt control the individual axes as they are implicitly created in the Javascript layer.
Using the example from above thread we can iterate and modify the showticklabels
property for each subplot.
import pandas as pd
import plotly.graph_objects as go
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/iris-data.csv')
fig = go.Figure()
fig.add_trace(
go.Splom(
dimensions=[
dict(label='sepal length', values=df['sepal length']),
dict(label='sepal width', values=df['sepal width']),
dict(label='petal length', values=df['petal length']),
dict(label='petal width', values=df['petal width'])],
text=df['class']
)
)
fig.update_layout({"xaxis"+str(i+1): dict(showticklabels = False) for i in range(4)})
fig.update_layout({"yaxis"+str(i+1): dict(showticklabels = False) for i in range(4)})