Here is an adapted example from the documentation that highlights the selected row in a dash datatable. The use of derived_virtual_selected_rows allos the highlighting to follow the entry around as you filter and sort the table. The table banding colors are optional.
import dash
from dash.dependencies import Input, Output
import dash_table
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
def get_style_data_conditional(selected_rows: list = []) -> list:
non_selected_band_color = "rgb(229, 236, 246)"
selected_band_color = '#98c21f'
return [
{
'if': {'row_index': 'odd'},
'backgroundColor': non_selected_band_color
},
{
'if': {'row_index': 'even'},
'backgroundColor': "white"
},
{
'if': {'row_index': selected_rows},
'backgroundColor': selected_band_color,
'fontWeight': 'bold',
'color': 'white',
},
]
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv')
# add an id column and set it as the index
# in this case the unique ID is just the country name, so we could have just
# renamed 'country' to 'id' (but given it the display name 'country'), but
# here it's duplicated just to show the more general pattern.
df['id'] = df['country']
df.set_index('id', inplace=True, drop=False)
app = dash.Dash(__name__)
app.layout = html.Div([
dash_table.DataTable(
id='datatable-row-ids',
columns=[
{'name': i, 'id': i, 'deletable': True} for i in df.columns
# omit the id column
if i != 'id'
],
data=df.to_dict('records'),
editable=True,
filter_action="native",
sort_action="native",
sort_mode='multi',
row_selectable='multi',
row_deletable=True,
selected_rows=[],
page_action='native',
style_data_conditional=get_style_data_conditional(),
page_current= 0,
page_size= 100,
),
html.Div(id='datatable-row-ids-container')
])
@app.callback(
[Output('datatable-row-ids-container', 'children'),
Output('datatable-row-ids', 'style_data_conditional')],
Input('datatable-row-ids', 'derived_virtual_row_ids'),
Input('datatable-row-ids', 'selected_row_ids'),
Input('datatable-row-ids', 'active_cell'),
Input('datatable-row-ids', 'derived_virtual_selected_rows'))
def update_graphs(row_ids, selected_row_ids, active_cell, selected_rows):
# When the table is first rendered, `derived_virtual_data` and
# `derived_virtual_selected_rows` will be `None`. This is due to an
# idiosyncrasy in Dash (unsupplied properties are always None and Dash
# calls the dependent callbacks when the component is first rendered).
# So, if `rows` is `None`, then the component was just rendered
# and its value will be the same as the component's dataframe.
# Instead of setting `None` in here, you could also set
# `derived_virtual_data=df.to_rows('dict')` when you initialize
# the component.
selected_id_set = set(selected_row_ids or [])
table_data_style_conditional = get_style_data_conditional(selected_rows)
if row_ids is None:
dff = df
# pandas Series works enough like a list for this to be OK
row_ids = df['id']
else:
dff = df.loc[row_ids]
active_row_id = active_cell['row_id'] if active_cell else None
colors = ['#FF69B4' if id == active_row_id
else '#7FDBFF' if id in selected_id_set
else '#0074D9'
for id in row_ids]
return [
dcc.Graph(
id=column + '--row-ids',
figure={
'data': [
{
'x': dff['country'],
'y': dff[column],
'type': 'bar',
'marker': {'color': colors},
}
],
'layout': {
'xaxis': {'automargin': True},
'yaxis': {
'automargin': True,
'title': {'text': column}
},
'height': 250,
'margin': {'t': 10, 'l': 10, 'r': 10},
},
},
)
# check if column exists - user may have deleted it
# If `column.deletable=False`, then you don't
# need to do this check.
for column in ['pop', 'lifeExp', 'gdpPercap'] if column in dff
], table_data_style_conditional
if __name__ == '__main__':
app.run_server(debug=True)